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aDepartment of Physics, University of Texas at Austin

Austin, TX 78712, U.S.A.
2Institut für Theoretische Physik, Universität Hannover

Appelstraße 2, D-30167 Hannover, Germany

E-mail: msihl@zippy.ph.utexas.edu, saemann@itp.uni-hannover.de

Abstract: We extend the analysis of hep-th/0408069 on a Lorentz invariant interpre-

tation of noncommutative spacetime to field theories on non-anticommutative superspace

with half the supersymmetries broken. By defining a Drinfeld-twisted Hopf superalgebra,

it is shown that one can restore twisted supersymmetry and therefore obtain a twisted ver-

sion of the chiral rings along with certain Ward-Takahashi identities. Moreover, we argue

that the representation content of theories on the deformed superspace is identical to that

of their undeformed cousins and comment on the consequences of our analysis concerning

non-renormalization theorems.

Keywords: Quantum Groups, Extended Supersymmetry, Non-Commutative Geometry,

Superspaces.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep012006065/jhep012006065.pdf

mailto:msihl@zippy.ph.utexas.edu
mailto:saemann@itp.uni-hannover.de
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
6
)
0
6
5

Contents

1. Introduction 1

2. Non-anticommutative superspace 2

2.1 Superspace conventions 2

2.2 The canonical non-anticommutative deformation 3

3. Drinfeld twist of the euclidean super Poincaré algebra 4
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1. Introduction

Over the last decade, there has been an immense effort by string theorists to improve our

understanding of string dynamics in nontrivial backgrounds. Most prominently, Seiberg

and Witten [1] discovered that superstring theory in a constant Kalb-Ramond 2-form back-

ground can be formulated in terms of field theories on noncommutative spacetimes upon

taking the so-called Seiberg-Witten zero slope limit. Subsequently, these noncommuta-

tive variants of ordinary field theories were intensely studied. It turned out that as low

energy effective field theories, noncommutative field theories exhibit many manifestations

of stringy features descending from the underlying string theory. Therefore, these theo-

ries have proven to be an ideal toy model for studying string theoretic questions which

otherwise remain intractable.
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Recently, it was realized that noncommutative field theories, although manifestly

breaking Poincaré symmetry,1 can be recast into a form which is invariant under a twist-

deformed action of the Poincaré algebra [2 – 4]. In this framework, the commutation relation

[xµ, xν ] = iΘµν is understood as a result of the non-cocommutativity of the coproduct of

a twisted Hopf Poincaré algebra acting on the coordinates. This result can be used to

show that the representation content of Moyal-Weyl-deformed theories is identical to that

of their undeformed Lorentz invariant counterparts. Furthermore, theorems in quantum

field theory which require Lorentz invariance for their proof can now be carried over to the

Moyal-Weyl-deformed case using twisted Lorentz invariance. For related works, see [5 – 10].

The purpose of the present paper is to extend the analysis of [3, 4] to supersym-

metric field theories on non-anticommutative superspaces. The latter spaces naturally

arise when considering type-II superstring theories in a constant graviphoton background.

In [11], Seiberg showed that there is a deformation of euclidean N = 1 superspace2 in

four dimensions which leads to a consistent supersymmetric field theory with half of the

supersymmetries broken. Using the Hopf-algebra twist, one can render twisted supersym-

metry manifest and use it to preserve properties of supersymmetric field theories in the

non-anticommutative situation. Note that twisted supersymmetry was already considered

in [14]. However, the analysis of extended supersymmetries presented in this reference

differs from the one we will propose here. Furthermore, we will discuss several new appli-

cations of the re-gained twisted supersymmetry.

The paper is organized as follows: We will fix our conventions for non-anticommutative

superspace in section 2 and introduce the Drinfeld twist of the euclidean super Poincaré

algebra and its universal enveloping algebra in section 3. Then, in section 4, we will discuss

the implications of these mathematical structures concerning the representation content,

the reemergence of (twisted) chiral rings and Ward-Takahashi identities. Moreover, we

comment on non-renormalization theorems in the twisted supersymmetric case before we

conclude in section 5. Some basic definitions and a useful extension of the Baker-Campbell-

Hausdorff formula can be found in the appendix.

2. Non-anticommutative superspace

2.1 Superspace conventions

Throughout this paper, we will mostly adopt the conventions of [11]. Consider the four-

dimensional euclidean space
�4 with coordinates (xµ) and extend it to the space

�4|4N

by adding 4N Graßmann coordinates (θiα, θ̄α̇
i ) with3 i = 1, . . . ,N and α, α̇ = 1, 2. The

1In noncommutative spacetime, the Poincaré group is broken down to the stabilizer subgroup of the

deformation tensor.
2Later on, non-anticommutativity for extended supersymmetry was considered, as well [12, 13].
3Strictly speaking, this superspace with euclidean signature can be consistently defined only for an even

number of supersymmetries, as the appropriate reality condition for θiα and θ̄α̇

i is a symplectic Majorana

condition and establishes a pairwise relation between these spinors. When working on the complexified

superspace �4|4N , i.e., when “temporarily doubling the fermionic degrees of freedom”, this obstacle however

disappears.

– 2 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
5

algebra of superfunctions on this space is denoted by

S := C∞ ⊗ Λ4N , (2.1)

where Λ4N := Λ•(
�4N ) is the Graßmann algebra with 4N generators. As it is well known,

an element of S can be decomposed into its Graßmann even and its Graßmann odd part

as well as into its “body” (the purely bosonic part) and its “soul” (the nilpotent part), cf.

e.g. [15].

Recall that translations in the Graßmann directions of this space are generated by the

superderivatives and the supercharges which act on a superfunction f ∈ S as

Diαf :=
∂

∂θiα
f + iσµ

αα̇θ̄α̇
i ∂µf , D̄i

α̇f := − ∂

∂θ̄α̇
i

f − iθiασµ
αα̇∂µf ,

Qiαf :=
∂

∂θiα
f − iσµ

αα̇θ̄α̇
i ∂µf , Q̄i

α̇f := − ∂

∂θ̄α̇
i

f + iθiασµ
αα̇∂µf ,

(2.2)

and satisfy the algebra (we do not allow for central charges)

{Diα,Djβ} = 0 , {D̄i
α̇, D̄j

β̇
} = 0 , {Diα, D̄j

β̇
} = −2iδj

i σ
µ

αβ̇
∂µ ,

{Qiα, Qjβ} = 0 , {Q̄i
α̇, Q̄j

β̇
} = 0 , {Qiα, Q̄j

β̇
} = 2iδj

i σ
µ

αβ̇
∂µ .

(2.3)

Our discussion simplifies considerably if we switch to the left-handed chiral coordinates

(yµ := xµ + iθiασµ
αα̇θ̄α̇

i , θiα, θ̄α̇
i ) , (2.4)

in which the representations of the superderivatives and the supercharges read

Diαf =
∂

∂θiα
f + 2iσµ

αα̇θ̄α̇
i ∂L

µ f , D̄i
α̇f = − ∂

∂θ̄α̇
i

f ,

Qiαf =
∂

∂θiα
f , Q̄i

α̇f = − ∂

∂θ̄α̇
i

f + 2iθiασµ
αα̇∂L

µ f ,

(2.5)

where ∂L
µ denotes a derivative with respect to yµ. Due to ∂L

µ = ∂µ, we drop the superscript

“L” in the following.

2.2 The canonical non-anticommutative deformation

The canonical deformation of
�4|4N to

�4|4N
~

amounts to [11]

{θ̂iα, θ̂jβ} = ~Ciα,jβ , (2.6)

where the hats indicate, as usual, that we are dealing with an operator representation.

Equivalently, one can instead deform the algebra of superfunctions S on
�4|4N to an

algebra S?, in which the product is given by the Moyal-type star product

f ? g = f exp

(
−~

2

←−
Q iαCiα,jβ−→Q jβ

)
g , (2.7)

– 3 –
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where
←−
Q iα and

−→
Q jβ are supercharges acting from the right and the left, respectively. Recall

that θiα←−Q jβ = −δi
jδ

α
β . All commutators involving this star multiplication will be denoted

by a ?, e.g. the graded commutator will read

{[f, g]}? := f ? g − (−1)f̃ g̃g ? f . (2.8)

with f̃ and g̃ denoting the grading of f and g, respectively, cf. appendix A.

In chiral coordinates, we have the following coordinate algebra on S?:

{θiα, θjβ}? = ~Ciα,jβ ,

[yµ, yν ]? = [yµ, θiα]? = [yµ, θiα]? = {θiα, θ̄α̇
i }? = {θ̄α̇

i , θ̄β̇
j }? = 0 .

(2.9)

This deformation has been shown to arise in string theory from open superstrings of type-

IIB in the background of a constant graviphoton field strength [16, 11, 17]. The corre-

sponding deformed algebra of superderivatives and supercharges reads

{Diα,Djβ}? = 0 , {D̄i
α̇, D̄j

β̇
}? = 0 ,

{Diα, D̄j

β̇
}? = −2iδj

i σ
µ

αβ̇
∂µ ,

{Qiα, Qjβ}? = 0 , {Q̄i
α̇, Q̄j

β̇
}? = −4~Ciα,jβσµ

αα̇σν
ββ̇

∂µ∂ν ,

{Qiα, Q̄j

β̇
}? = 2iδj

i σ
µ

αβ̇
∂µ .

(2.10)

By inspection of this deformed algebra, it becomes clear that the number of supersymme-

tries is reduced to N/2, since those generated by Q̄i
α̇ will be broken.4 On the other hand,

it still allows for the definition of chiral and anti-chiral superfields as the algebra of the

superderivatives Diα and D̄i
α̇ is undeformed.

An alternative approach, which was followed in [18], manifestly preserves supersymme-

try but breaks chirality. This simply means that one replaces the supercharges Qiα by the

superderivatives Diα in the definition of the deformation (2.7). Without chiral superfields,

however, it is impossible to define super Yang-Mills theory in the standard superspace

formalism.

In the approach we will present in the following, supersymmetry and chirality are

manifestly and simultaneously preserved, albeit in a twisted form.

3. Drinfeld twist of the euclidean super Poincaré algebra

3.1 The euclidean super Poincaré algebra and its enveloping algebra

The starting point of our discussion is the ordinary euclidean super Poincaré algebra5
g on

�4|4N without central extensions, which generates the isometries on the space
�4|4N . More

4Note that this result is due to the fact that we are using euclidean spacetime. In Minkowski superspace,

Q and Q̄ are related via complex conjugation, and it is therefore not possible to break only half of the

supersymmetries.
5or inhomogeneous super euclidean algebra

– 4 –
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explicitly, we have the generators of translations Pµ, the generators of four-dimensional ro-

tations Mµν and the 4N supersymmetry generators Qiα and Q̄i
α̇. They satisfy the following

algebra:

[Pρ,Mµν ] = i(δµρPν − δνρPµ) ,

[Mµν ,Mρσ ] = −i(δµρMνσ − δµσMνρ − δνρMµσ + δνσMµρ) ,

[Pµ, Qiα] = 0 , [Pµ, Q̄i
α̇] = 0 ,

[Mµν , Qiα] = i(σµν)α
βQiβ , [Mµν , Q̄iα̇] = i(σ̄µν)α̇

β̇
Q̄iβ̇ ,

{Qiα, Q̄j

β̇
} = 2δj

i σ
µ

αβ̇
Pµ , {Qiα, Qjβ} = {Q̄i

α̇, Q̄j

β̇
} = 0 .

(3.1)

The Casimir operators of the Poincaré algebra used for labelling representations are P 2

and W 2, where the latter is the square of the Pauli-Ljubanski operator

Wµ = −1

2
εµνρσMνρP σ . (3.2)

This operator is, however, not a Casimir of the super Poincaré algebra; instead, there is a

supersymmetric variant: the (superspin) operator C̃2 defined as the square of

C̃µν = W̃µPν − W̃νPµ, (3.3)

where W̃µ := Wµ − 1
4Q̄i

α̇σ̄α̇α
µ Qiα.

Recall that a universal enveloping algebra U(a) of a Lie algebra a is an associative

unital algebra together with a Lie algebra homomorphism h : a → U(a), satisfying the

following universality property: For any further associative algebra A with homomorphism

φ : a → A, there exists a unique homomorphism ψ : U(a) → A of associative algebras, such

that φ = ψ ◦ h. Every Lie algebra has an universal enveloping algebra, which is unique up

to algebra isomorphisms.

The univeral enveloping algebra U(g) of the euclidean super Poincaré algebra g is a

cosupercommutative Hopf superalgebra6 with counit and coproduct defined by ε(�) = 1

and ε(x) = 0 otherwise, ∆(�) = �⊗ � and ∆(x) = �⊗ x + x ⊗ � otherwise.

3.2 The Drinfeld twist of the enveloping algebra

Given a Hopf algebra H with coproduct ∆, a counital 2-cocycle F is a counital element of

H ⊗ H, which has an inverse and satisfies

F12(∆ ⊗ id)F = F23(id ⊗ ∆)F , (3.4)

where we used the common shorthand notation F12 = F ⊗ �, F23 = � ⊗ F etc. As done

in [3], such a counital 2-cocyle F ∈ H ⊗ H can be used to define a twisted Hopf algebra7

HF with a new coproduct given by

∆F (Y ) := F∆(Y )F−1 . (3.5)

6cf. appendix
7This twisting amounts to constructing a quasitriangular Hopf algebra, as discussed, e.g., in [19].

– 5 –
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The element F is called a Drinfeld twist ; such a construction was first considered in [20].

For our purposes, i.e. to recover the canonical algebra of non-anticommutative coordi-

nates (2.9), we choose the abelian twist F ∈ U(g) ⊗ U(g) defined by

F = exp

(
−~

2
Ciα,jβQiα ⊗ Qjβ

)
. (3.6)

As one easily checks, F is indeed a counital 2-cocycle: First, it is invertible and its inverse

is given by F−1 = exp
(

~

2Ciα,jβQiα ⊗ Qjβ

)
. (Because the Qiα are nilpotent, F and F−1

are not formal series but rather finite sums.) Second, F is counital since it satisfies the

conditions

(ε ⊗ id)F = � and (id ⊗ ε)F = � , (3.7)

as can be verified without difficulty. Also, the remaining cocycle condition (3.4) turns out

to be fulfilled since

F12(∆ ⊗ id)F = F12 exp

(
−~

2
Ciα,jβ(Qiα ⊗ � + �⊗ Qiα) ⊗ Qjβ

)
,

F23(id ⊗ ∆)F = F23 exp

(
−~

2
Ciα,jβQiα ⊗ (Qjβ ⊗ � + �⊗ Qjβ)

) (3.8)

yields, due to the commutativity of the Qiα,

F12F13F23 = F23F12F13 , (3.9)

which is obviously true.

Note that after introducing this Drinfeld twist, the multiplication in U(g) and the

action of g on the coordinates remain the same. In particular, the representations of the

twisted and the untwisted algebras are identical. It is only the action of U(g) on the tensor

product of the representation space, given by the coproduct, which changes.

Let us be more explicit on this point: the coproduct of the generator Pµ does not get

deformed, as Pµ commutes with Qjβ:

∆F (Pµ) = ∆(Pµ) . (3.10)

For the other generators of the euclidean super Poincaré algebra, the situation is slightly

more complicated. Due to the rule8 (a1 ⊗ a2)(b1 ⊗ b2) = (−1)ã2 b̃1(a1b1 ⊗ a2b2), where ã

denotes the Graßmann parity of a, we have the relations9 (cf. equation (B.2))

F (D ⊗ �)F−1 =

=

∞∑

n=0

(−1)nD̃+
n(n−1)

2

n!

(
−~

2

)n

CI1J1 . . . CInJn{[QI1 , {[. . . {[QIn
,D]}]}]} ⊗ QJ1 . . . QJn

,

8cf. appendix
9Here, Ik and Jk are multi-indices, e.g. Ik = ikαk.
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F (�⊗ D)F−1 = (3.11)

=

∞∑

n=0

(−1)nD̃+ n(n−1)
2

n!

(
−~

2

)n

CI1J1 . . . CInJnQI1 . . . QIn
⊗ {[QJ1 , {[. . . {[QJn

,D]}]}]} ,

where {[·, ·]} denotes the graded commutator. From this, we immediately obtain

∆F(Qiα) = ∆(Qiα) . (3.12)

Furthermore, we can also derive the expressions for ∆F (Mµν) and ∆F (Q̄k
γ̇), which read

∆F (Mµν) = ∆(Mµν) +
i~

2
Ciα,jβ [(σµν)α

γQiγ ⊗ Qjβ + Qiα ⊗ (σµν)β
γQjγ ] , (3.13)

∆F (Q̄k
γ̇) = ∆(Q̄k

γ̇) + ~Ciα,jβ
[
δk
i σµ

αγ̇Pµ ⊗ Qjβ + Qiα ⊗ δk
j σµ

βγ̇Pµ

]
. (3.14)

The twisted coproduct of the Pauli-Ljubanski operator Wµ becomes

∆F (Wµ) = ∆(Wµ)− i~

4
Ciα,jβεµνρσ (Qiα ⊗ (σνρ)β

γQjγP σ + (σνρ)α
γQiγP σ ⊗ Qjβ) , (3.15)

while for its supersymmetric variant C̃µν , we have

∆F (C̃µν) = ∆(C̃µν) −
~

2
Ciα,jβ

[
Qiα ⊗ Qjβ,∆(C̃µν)

]

= ∆(C̃µν) −
~

2
Ciα,jβ

([
Qiα, C̃µν

]
⊗ Qjβ + Qiα ⊗

[
Qjβ, C̃µν

])

= ∆(C̃µν) ,

(3.16)

since [Qiα, C̃µν ] = 0 by construction.

3.3 Representation on the algebra of superfunctions

Given a representation of the Hopf algebra U(g) in an associative algebra consistent with

the coproduct ∆, one needs to adjust the multiplication law after introducing a Drinfeld

twist. If F−1 is the inverse of the element F ∈ U(g) ⊗ U(g) generating the twist, the new

product compatible with ∆F reads

a ? b := mF (a ⊗ b) := m ◦ F−1(a ⊗ b) , (3.17)

where m denotes the ordinary product m(a ⊗ b) = ab.

Let us now turn to the representation of the Hopf superalgebra U(g) on the algebra

S := C∞(
�4)⊗Λ4N of superfunctions on

�4|4N . On S, we have the standard representation

of the super Poincaré algebra in chiral coordinates (yµ, θiα, θ̄α̇
i ):

Pµf = i∂µf , Mµνf = i(yµ∂ν − yν∂µ)f ,

Qiαf =
∂

∂θiα
f , Q̄i

α̇f =

(
− ∂

∂θ̄α̇
i

f + 2iθiασµ
αα̇∂µ

)
f ,

(3.18)

– 7 –
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where f is an element of S. After the twist, the multiplication m becomes the twist-adapted

multiplication mF (3.17), which reproduces the coordinate algebra of
�4|4N

~
, e.g. we have

{θiα, θjβ}? : = mF (θiα ⊗ θjβ) + mF (θjβ ⊗ θiα)

= θiαθjβ +
~

2
Ciα,jβ + θjβθiα +

~

2
Cjβ,iα

= ~Ciα,jβ .

(3.19)

Thus, we have constructed a representation of the euclidean super Poincaré algebra on
�4|4N

~
by employing S?, thereby making twisted supersymmetry manifest.

4. Applications

We saw in the above construction of the twisted euclidean super Poincaré algebra that

our description is equivalent to the standard treatment of Moyal-Weyl-deformed super-

space. We can therefore use it to define field theories via their lagrangians, substituting

all products by star products, which then will be invariant under twisted super Poincaré

transformations. This can be directly carried over to quantum field theories, replacing the

products between operators by star products. Therefore, twisted super Poincaré invariance,

in particular twisted supersymmetry, will always be manifest.

As a consistency check, we want to show that the tensor Ciα,jβ := {θiα, θjβ}? is invari-

ant under twisted super Poincaré transformations before tackling more advanced issues.

Furthermore, we want to relate the representation content of the deformed theory with that

of the undeformed one by scrutinizing the Casimir operators of this superalgebra. Eventu-

ally, we will turn to supersymmetric Ward-Takahashi identities and their consequences for

renormalizability.

4.1 Invariance of Ciα,jβ

The action of the twisted supersymmetry charge on Ciα,jβ is given by

~QF
kγCiα,jβ = QF

kγ

(
{θiα, θjβ}?

)

: = mF ◦
(
∆F (Qkγ)(θiα ⊗ θjβ + θjβ ⊗ θiα)

)

= mF ◦
(
∆(Qkγ)(θiα ⊗ θjβ + θjβ ⊗ θiα)

)

= m ◦ F−1(δi
kδ

α
γ ⊗ θjβ + δj

kδ
β
γ ⊗ θiα − θiα ⊗ δj

kδ
β
γ − θjβ ⊗ δi

kδ
α
γ )

= m(δi
kδ

α
γ ⊗ θjβ + δj

kδ
β
γ ⊗ θiα − θiα ⊗ δj

kδ
β
γ − θjβ ⊗ δi

kδ
α
γ )

= 0 .

(4.1)

Similarly, we have

~(Q̄k
γ̇)FCiα,jβ = mF ◦

(
∆F (Q̄k

γ̇)(θiα ⊗ θjβ + θjβ ⊗ θiα)
)

= mF ◦
(
∆(Q̄k

γ̇)(θiα ⊗ θjβ + θjβ ⊗ θiα)
)

= 0 ,

(4.2)

– 8 –
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and

~PF
µνCiα,jβ = mF ◦

(
∆(Pµ)(θiα ⊗ θjβ + θjβ ⊗ θiα)

)
= 0 . (4.3)

For the action of the twisted rotations and boosts, we get

~MF
µνCiα,jβ = mF ◦

(
∆F (Mµν)(θiα ⊗ θjβ + θjβ ⊗ θiα)

)

= m ◦ F−1F∆(Mµν)F−1(θiα ⊗ θjβ + θjβ ⊗ θiα)

= m(�⊗ Mµν + Mµν ⊗ �)
(
(θiα ⊗ θjβ + θjβ ⊗ θiα) − ~Ciα,jβ �⊗ �

)

= 0 ,

(4.4)

where we made use of Mµν = i(yµ∂ν − yν∂µ). Thus, Ciα,jβ is invariant under the twisted

euclidean super Poincaré transformations, which is a crucial check of the validity of our

construction.

4.2 Representation content

An important feature of noncommutative field theories was demonstrated recently [3, 4]:

they share the same representation content as their commutative counterparts. Of course,

one would expect this to also hold for non-anticommutative deformations, in particular

since the superfields defined, e.g., in [11] on a deformed superspace have the same set of

components as the undeformed ones.

To decide whether the representation content in our case is the same as in the com-

mutative theory necessitates checking whether the twisted action of the Casimir operators

P 2 = Pµ ? Pµ and C̃2 = C̃µν ? C̃µν on elements of U(g) ⊗ U(g) is altered with respect to

the untwisted case. But since we have already shown in (3.10) and (3.16) that the actions

of the operators Pµ and C̃µν remain unaffected by the twist, it follows immediately that

the operators P 2 and C̃2 are still Casimir operators in the twisted case. Together with the

fact that the representation space considered as a module is not changed, this proves that

the representation content is indeed the same.

4.3 Chiral rings and correlation functions

The chiral rings of operators in supersymmetric quantum field theories are cohomology rings

of the supercharges Qiα and Q̄i
α̇. Correlation functions which are built out of elements of

a single such chiral ring have peculiar properties.

In [11], the anti-chiral ring was defined and discussed for non-anticommutative field

theories. The chiral ring, however, lost its meaning: the supersymmetries generated by

Q̄i
α̇ are broken, cf. (2.10), and therefore the vacuum is expected to be no longer invariant

under this generator. Thus, the Q̄-cohomology is not relevant for correlation functions of

chiral operators.

In our approach to non-anticommutative field theory, twisted supersymmetry is mani-

fest and therefore the chiral ring can be treated similarly to the untwisted case as we want

to discuss in the following.

Let us assume that the Hilbert space H of our quantum field theory carries a repre-

sentation of the euclidean super Poincaré algebra g, and that there is a unique, g invariant
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vacuum state |0〉. Although the operators Qiα and Q̄i
α̇ are not related via hermitean conju-

gation when considering supersymmetry on euclidean spacetime, it is still natural to assume

that the vacuum is annihilated by both supercharges. The reasoning for this is basically the

same as the one employed in [11] to justify the use of Minkowski superfields on euclidean

spacetime: one can obtain a complexified supersymmetry algebra on euclidean space from

a complexified supersymmetry algebra on Minkowski space.10 Furthermore, it has been

shown that in the non-anticommutative situation, just as in the ordinary undeformed case,

the vacuum energy of the Wess-Zumino model is not renormalized [21].

We can now define the ring of chiral and anti-chiral operators by the relations

{[Q̄,O]}? = 0 and {[Q, Ō]}? = 0 , (4.5)

respectively. In a correlation function built from chiral operators, Q̄-exact terms, i.e. terms

of the form {[Q̄,A]}?, do not contribute as is easily seen from

〈{[Q̄,A]}? ? O1 ? . . . ? On〉 =〈{[Q̄,A ? O1 ? . . . ? On]}?〉 ± 〈A ? {[Q̄,O1]}? ? . . . ? On〉
± . . . ± 〈A ? O1 ? . . . ? {[Q̄,On]}?〉

=〈Q̄A ? O1 ? . . . ? On〉 ± 〈A ? O1 ? . . . ? On ? Q̄〉 = 0 ,

(4.6)

where we used that Q̄ annihilates both 〈0| and |0〉. Therefore, the relevant operators in

the chiral ring consist of the Q̄-closed modulo the Q̄-exact operators. The same argument

holds for the anti-chiral ring after replacing Q̄ with Q, namely

〈{[Q,A]}? ? Ō1 ? . . . ? Ōn〉 =〈{[Q,A ? Ō1 ? . . . ? Ōn]}?〉 ± 〈A ? {[Q, Ō1]}? ? . . . ? Ōn〉
± . . . ± 〈A ? Ō1 ? . . . ? {[Q, Ōn]}?〉

=〈QA ? Ō1 ? . . . ? Ōn〉 ± 〈A ? Ō1 ? . . . ? Ōn ? Q〉 = 0 .

(4.7)

4.4 Twisted supersymmetric Ward-Takahashi identities

The above considered properties of correlation functions are particularly useful since they

imply a twisted supersymmetric Ward-Takahashi identity: any derivative with respect

to the bosonic coordinates of an anti-chiral operator annihilates a purely chiral or anti-

chiral correlation function. This is due to the fact that ∂ ∼ {Q, Q̄} and therefore any

derivative gives rise to a Q-exact term, which causes an anti-chiral correlation function to

vanish. Analogously, the bosonic derivatives of chiral correlation functions vanish. Thus,

the correlation functions are independent of the bosonic coordinates, and we can move the

operators to a far distance of each other. This causes the correlation function to factorize11:

〈Ō1(x1) ? . . . ? Ōn(xn)〉 = 〈Ō1(x
∞
1 )〉 ? . . . ? 〈Ōn(x∞

n )〉 . (4.8)

and such a correlation function therefore does not contain any contact terms. This phe-

nomenon is called clustering in the literature.

10One can then perform all superspace calculations and impose suitable reality conditions on the compo-

nent fields in the end.
11This observation has first been made in [22].
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Another direct consequence of (4.6) is the holomorphic dependence of the chiral cor-

relation functions on the coupling constants, i.e.

∂

∂λ̄
〈O1 ? . . . ? On〉 = 0 . (4.9)

As an illustrative example for this, consider the case of a N = 1 superpotential ‘interaction’

LW =

∫
d2θλΦ +

∫
d2θ̄λ̄Φ̄ , (4.10)

where Φ = φ(y)+
√

2θαψα(y)+ θ2F (y) is a chiral superfield and one of the supersymmetry

transformations is given by {Qα, ψβ} = εαβF . Then we have

∂

∂λ̄
〈O1 ? . . . ? On〉 =

∫
d4yd2θ̄〈O1 ? . . . ? On ? Φ̄〉 =

∫
d4y〈O1 ? . . . ? OnF 〉

=

∫
d4y〈O1 ? . . . ? On{Q̄α̇, ψ̄α̇}〉 = 0 .

(4.11)

4.5 Comments on non-renormalization theorems

A standard perturbative non-renormalization theorem12 for N = 1 supersymmetric field

theory states that every term in the effective action can be written as an integral over

d2θd2θ̄. It has been shown in [21] that this theorem also holds in the non-anticommutative

case. The same is then obviously true in our case of twisted and therefore unbroken

supersymmetry, and the proof carries through exactly as in the ordinary case.

Furthermore, in a supersymmetric non-linear sigma-model, the superpotential is not

renormalized. A nice argument for this fact was given in [24]. Instead of utilizing Feynman

diagrams and supergraph techniques, one makes certain naturalness assumptions about

the effective superpotential. These assumptions turn out to be strong enough to enforce a

non-perturbative non-renormalization theorem.

In the following, let us demonstrate this argument in a simple case, following closely

[25]. Take a non-linear sigma model with superpotential

W =
1

2
mΦ2 +

1

3
λΦ3 , (4.12)

where Φ = φ +
√

2θψ + θθF is an ordinary chiral superfield. The assumptions we impose

on the effective action are the following:

. Supersymmetry is also a symmetry of the effective superpotential.

. The effective superpotential is holomorphic in the coupling constants.

. Physics is smooth and regular under the possible weak-coupling limits.

. The effective superpotential preserves the U(1) × U(1)R symmetry of the original

superpotential with charge assignments Φ : (1, 1), m : (−2, 0), λ : (−3,−1) and

d2θ : (0,−2).

12For more details and a summary of non-renormalization theorems, see [23].

– 11 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
5

It follows that the effective superpotential must be of the form

Weff = mΦW

(
λΦ

m

)
=

∑

i

aiλ
im1−iΦi+2 , (4.13)

where W is an arbitrary holomorphic function of its argument. Regularity of physics in

the two weak-coupling limits λ → 0 and m → 0 then implies that Weff = W.

To obtain an analogous non-renormalization theorem in the non-anticommutative set-

ting, we make similar assumptions about the effective superpotential as above. We start

from

W? =
1

2
mΦ ? Φ +

1

3
λΦ ? Φ ? Φ , (4.14)

and assume the following:

. Twisted supersymmetry is a symmetry of the effective superpotential. Note that

this assumption is new compared to the discussion in [21]. Furthermore, arguments

substantiating that the effective action can always be written in terms of star products

have been given in [26].

. The effective superpotential is holomorphic in the coupling constants. (This assump-

tion is equally natural as in the supersymmetric case, since it essentially relies on the

existence of chiral and anti-chiral rings, which we proved above for our setting.)

. Physics is smooth and regular under the possible weak-coupling limits.

. The effective superpotential preserves the U(1) × U(1)R symmetry of the original

superpotential with charge assignments Φ : (1, 1), m : (−2, 0), λ : (−3,−1), d2θ :

(0,−2) and, additionally, Ciα,jβ : (0, 2), |C| ∼ Ciα,jβCiα,jβ : (0, 4).

At first glance, it seems that one can now construct more U(1) × U(1)R-symmetric terms

in the effective superpotential due to the new coupling constant C; however, this is not

true. Taking the C → 0 limit, one immediately realizes that C can never appear in the

denominator of any term. Furthermore, it is not possible to construct a term containing

C in the nominator, which does not violate the regularity condition in at least one of the

other weak-coupling limits. Altogether, we arrive at an expression similar to (4.13)

Weff,? =
∑

i

aiλ
im1−iΦ?i+2 , (4.15)

and find that Weff,? = W?.

To compare this result with the literature, first note that, in a number of papers, it has

been shown that quantum field theories in four dimensions with N = 1
2 supersymmetry

are renormalizable to all orders in perturbation theory [27 – 32]. This even remains true

for generic N = 1
2 gauge theories with arbitrary coefficients, which do not arise as a

?-deformation of N = 1 theories. However, the authors of [21, 28], considering the non-

anticommutative Wess-Zumino model we discussed above, add certain terms to the action

by hand, which seem to be necessary for the model to be renormalizable. This would

clearly contradict our result Weff,? = W?. We conjecture, that this contradiction is merely

a seeming one and that it is resolved by a resummation of all the terms in the perturbative
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expansion. A similar situation was encountered in [26], where it was found that one could

not write certain terms of the effective superpotential using star products, as long as they

were considered separately. This obstruction, however, vanished after a resummation of

the complete perturbative expansion and the star product was found to be sufficient to

write down the complete effective superpotential.

Clearly, the above result is stricter than the result obtained in [21], where less constraint

terms in the effective superpotential were assumed. However, we should stress that it is still

unclear to what extend the above assumptions on Weff,? are really natural. This question

certainly deserves further and deeper study, which we prefer to leave to future work.

5. Conclusions and outlook

We constructed a Drinfeld-twisted Hopf superalgebra and used this setup to study certain

aspects of N = 1/2 supersymmetric quantum field theories and their N -extended variants.

In particular, we scrutinized the consequences of this twisting, i.e. the introduction of a

twisted (euclidean) super Poincaré symmetry, on various important structures of supersym-

metric QFTs, such as the cohomology ring of chiral operators and related Ward-Takahashi

identities. We found that in our framework, a twisted version of these notions can be

retrieved and can thus be used to simplify calculations.

Furthermore, we discussed a number of ‘naturalness’ assumptions on the deformed

superpotential which can lead to non-perturbative non-renormalization theorems similar

to those in the N = 1 supersymmetric case. Granted these assumptions, these theorems

bring about many potential simplifications in higher loop calculations within N = 1/2

supersymmetric QFT. More work is needed, however, to clarify the situation here.

Possible future studies might include Drinfeld-twisted superconformal invariance.

Studying twist-deformed superconformal field theories, following the discussion of twisted

conformal invariance in [8], could potentially yield further interesting results. Moreover,

the ideas presented above may prove valuable for introducing a non-anticommutative de-

formation of supergravity. Building upon the discussion presented in [10], one could try

to construct a local version of the twisted supersymmetry. The latter proposal appears

interesting to us and certainly deserves further investigation.
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Note added

After finishing this paper, the article [33] appeared, in which an analogous construction

was discussed for N = (1, 1) supersymmetry.

A. Definitions

Recall that a Hopf algebra is an algebra H over a field k together with a product m, a unit

�, a coproduct ∆ : H → H ⊗ H satisfying (∆ ⊗ id)∆ = (id ⊗ ∆)∆, a counit ε : H → k

satisfying (ε ⊗ id)∆ = id and (id ⊗ ε)∆ = id and an antipode S : H → H satisfying

m(S ⊗ id)∆ = ε� and m(id ⊗ S)∆ = ε�. The maps ∆, ε and S are unital maps, that is

∆(�) = �⊗ �, ε(�) = 1 and S(�) = �.
A supervector space is a �2-graded vector space, i.e., one can decompose a supervector

space into the direct sum of an even and an odd subspace. If an element v of a supervector

space is contained in the even or the odd subspace, we write ṽ = 0 or ṽ = 1, respectively. A

superalgebra is a supervector space endowed with an associative multiplication respecting

the grading (i.e. ãb ≡ ã + b̃ mod 2) and a unit � with �̃ = 0. On superalgebras, we define

the graded commutator by {[a, b]} := ab − (−1)ãb̃ba.

We fix the following rule for the interplay between the multiplication and the tensor

product ⊗ in a superalgebra:

(a1 ⊗ a2)(b1 ⊗ b2) = (−1)ã2 b̃1(a1b1 ⊗ a2b2) . (A.1)

A superalgebra is called a Hopf superalgebra if it is endowed with a graded coproduct13

∆ and a counit ε, both of which are graded algebra morphisms, i.e.

∆(ab) =
∑

(−1)ã(2) b̃(1)a(1)b(1) ⊗ a(2)b(2) and ε(ab) = ε(a)ε(b) , (A.2)

and an antipode S which is a graded algebra anti-morphism, i.e.

S(ab) = (−1)ãb̃S(b)S(a) . (A.3)

As usual, one furthermore demands that ∆, ε and S are unital maps, that ∆ is coassociative

and that ε and S are counital. For more details, see [34] and references therein.

B. Extended graded Baker-Campbell-Hausdorff formula

First, note that eA⊗Be−A⊗B is indeed equal to � ⊗ � for any two elements A,B of a

superalgebra. This is clear for Ã = 0 or B̃ = 0. For Ã = B̃ = 1 it is most instructively

gleaned from

(
�⊗ � + A ⊗ B − 1

2
A2 ⊗ B2 + . . .

)(
�⊗ �− A ⊗ B − 1

2
A2 ⊗ B2 − . . .

)
= �⊗ � . (B.1)

13In Sweedler’s notation with ∆(a) =
P

a(1) ⊗ a(2), this amounts to ã ≡ ã(1) + ã(2) mod 2.
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Now, for elements AI , BJ ,D of a graded algebra, where the parities of the elements

AI and BJ are all equal Ã = ÃI = B̃J and {[AI , AJ ]} = {[BI , BJ ]} = 0, we have the relation

eCIJAI⊗BJ (D ⊗ �) e−CKLAK⊗BL = (B.2)

=

∞∑

n=0

(−1)nÃD̃+
n(n−1)

2
Ã

n!
CI1J1 . . . CInJn{[AI1 , {[. . . {[AIn

,D]}]}]} ⊗ BJ1 . . . BJn
.

Proof: To verify this relation, one can simply adapt the well-known iterative proof via a

differential equation. First note that

eλCIJAI⊗BJ (CKLAK ⊗ BL) = (CKLAK ⊗ BL)eλCIJ AI⊗BJ . (B.3)

Then define the function

F (λ) := eλCIJAI⊗BJ (D ⊗ 1)e−λCKLAK⊗BL , (B.4)

which has the derivative

d

dλ
F (λ) =(CMNAM ⊗ BN )eλCIJAI⊗BJ (D ⊗ 1)e−λCKLAK⊗BL− (B.5)

− eλCIJ AI⊗BJ (D ⊗ 1)e−λCKLAK⊗BL(CMNAM ⊗ BN ) .

Thus, we have the identity d
dλ

F (λ) = [(CMNAM ⊗BN ), F (λ)], which, when applied recur-

sively together with the Taylor formula, leads to

F (1) =
∞∑

n=0

1

n!

[
CI1J1AI1 ⊗ BJ1

[
. . .

[
CInJnAIn

⊗ BJn
,D ⊗ �

]
. . .

]]
. (B.6)

Also recursively, one easily checks that

[
CI1J1AI1 ⊗ BJ1

[
. . .

[
CInJnAIn

⊗ BJn
,D ⊗ �

]
. . .

]]
= (B.7)

= (−1)ÃD̃(−1)κCI1J1 . . . CInJn{[AI1 , {[. . . {[AIn
,D]}]}]} ⊗ BJ1 . . . BJn

,

where κ is given by κ = (n − 1)Ã + (n − 2)Ã + . . . + Ã. Furthermore, we have

(−1)κ = (−1)n
2−

P

n

i=1 i = (−1)n
2+

P

n

i=1 i = (−1)
n(n−1)

2 , (B.8)

which, together with the results above, proves formula (B.2). This extended graded Baker-

Campbell-Hausdorff formula also generalizes straightforwardly to the case when D ⊗ � is

replaced by �⊗ D.
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